简介

之前,C++中的随机数生成都依赖于一个简单的rand函数。这个函数产生一定范围内的一个均匀随机整数。如果需要其他随机分布或者其他范围的随机数,就需要根据rand函数产生的随机数进行再加工,不过这时,就容易引入非随机性了。

C++11新标准中引入了一个新的随机数库,相关功能定义在random头文件中,通过多个互相协作的类,可以生成任意范围内、服从多种随机分布的随机数。

随机引擎

新的随机数库中引入了随机引擎的概念。一个随机引擎将产生一组原始的随机数列,一般这些原始的随机数不能直接使用,要配合随机分布类产生符合某分布的随机数后才能进行使用。

一般,最常用的随机引擎是default_random_engine。

std::cout<<"test default random engine:\n";
std::default_random_engine e;
e.seed(time(0));
for(size_t i = 0; i < 10; i++)
	std::cout<<e()<<'\t';
std::cout<<'\n';
std::cout<<"test default random engine done.\n"<<std::endl;

std::cout<<"test default random engine:\n";
std::default_random_engine e;
e.seed(time(0));
for(size_t i = 0; i < 10; i++)
	std::cout<<e()<<'\t';
std::cout<<'\n';
std::cout<<"test default random engine done.\n"<<std::endl;

随机分布

可以用uniform_int_distribution和随机引擎配合来产生均匀分布的随机整数。

std::cout<<"test random distribution:\n";
e.seed(time(0));
std::uniform_int_distribution<unsigned> u(0, 9);
for(size_t i = 0; i < 10; i++)
	std::cout<<u(e)<<'\t';
std::cout<<'\n';
std::cout<<"test random distribution done.\n"<<std::endl;
std::cout<<"test random distribution:\n";
e.seed(time(0));
std::uniform_int_distribution<unsigned> u(0, 9);
for(size_t i = 0; i < 10; i++)
	std::cout<<u(e)<<'\t';
std::cout<<'\n';
std::cout<<"test random distribution done.\n"<<std::endl;

类似的,uniform_real_distribution则可以产生一个均匀分布的实数。

std::cout<<"test real distribution:\n";
e.seed(time(0));
std::uniform_real_distribution<double> u2(0, 1);
for(size_t i = 0; i < 10; i++)
	std::cout<<u2(e)<<'\t';
std::cout<<'\n';
std::cout<<"test real distribution done.\n"<<std::endl;
std::cout<<"test real distribution:\n";
e.seed(time(0));
std::uniform_real_distribution<double> u2(0, 1);
for(size_t i = 0; i < 10; i++)
	std::cout<<u2(e)<<'\t';
std::cout<<'\n';
std::cout<<"test real distribution done.\n"<<std::endl;

换一个分布,试试正态分布:

std::cout<<"test normal distribution:\n";
e.seed(time(0));
std::normal_distribution<> n(4, 1.5);
std::vector<unsigned> vals(9);
for(size_t i = 0; i < 250; i++)
{
	unsigned v = lround(n(e));
	if(v < vals.size()) vals[v]++;
}

for(size_t i = 0; i < vals.size(); i++)
{
	std::cout<<i<<": "<<std::string(vals[i], '*')<<std::endl;
}
std::cout<<"test normal distribution done.\n"<<std::endl;
std::cout<<"test normal distribution:\n";
e.seed(time(0));
std::normal_distribution<> n(4, 1.5);
std::vector<unsigned> vals(9);
for(size_t i = 0; i < 250; i++)
{
	unsigned v = lround(n(e));
	if(v < vals.size()) vals[v]++;
}
 
for(size_t i = 0; i < vals.size(); i++)
{
	std::cout<<i<<": "<<std::string(vals[i], '*')<<std::endl;
}
std::cout<<"test normal distribution done.\n"<<std::endl;

伯努利分布也是经常会使用到的:

std::cout<<"test bernoulli distribution:\n";
e.seed(time(0));
std::bernoulli_distribution b(0.7);
std::vector<unsigned> bers(2);
for(size_t i = 0; i < 200; i++)
{
	if(b(e)) bers[1]++;
	else bers[0]++;
}
std::cout<<"True: "<<bers[1]<<std::endl;
std::cout<<"False: "<<bers[0]<<std::endl;
std::cout<<"test bernoulli distribution done.\n";
std::cout<<"test bernoulli distribution:\n";
e.seed(time(0));
std::bernoulli_distribution b(0.7);
std::vector<unsigned> bers(2);
for(size_t i = 0; i < 200; i++)
{
	if(b(e)) bers[1]++;
	else bers[0]++;
}
std::cout<<"True: "<<bers[1]<<std::endl;
std::cout<<"False: "<<bers[0]<<std::endl;
std::cout<<"test bernoulli distribution done.\n";

整个测试程序的输出结果如下:

test default random engine:
1446291605      455604842       1571377939      395129967       929918845       1907528696      51427609        1055398369      2012947210      146383632
test default random engine done.

test random distribution:
6       2       7       1       4       8       0       4       9       0
test random distribution done.

test real distribution:
0.212158        0.183997        0.888262        0.491458        0.0681652       0.173643        0.128234        0.954471        0.891836        0.912416
test real distribution done.

test normal distribution:
0: **
1: ********
2: ******************************
3: *************************************************
4: *****************************************************************
5: *******************************************************
6: *****************************
7: *********
8: *
test normal distribution done.

test bernoulli distribution:
True: 132
False: 68
test bernoulli distribution done.
test default random engine:
1446291605      455604842       1571377939      395129967       929918845       1907528696      51427609        1055398369      2012947210      146383632
test default random engine done.
 
test random distribution:
6       2       7       1       4       8       0       4       9       0
test random distribution done.
 
test real distribution:
0.212158        0.183997        0.888262        0.491458        0.0681652       0.173643        0.128234        0.954471        0.891836        0.912416
test real distribution done.
 
test normal distribution:
0: **
1: ********
2: ******************************
3: *************************************************
4: *****************************************************************
5: *******************************************************
6: *****************************
7: *********
8: *
test normal distribution done.
 
test bernoulli distribution:
True: 132
False: 68
test bernoulli distribution done.

总结

C++11新标准中引入了比rand更强大的随机数库。

随机数引擎和随机分布类配合,共同产生符合某一分布、在某一范围内的随机数。